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Why Visualization

To present the information of data graphically:

Straightforward
Intuitive
Simple
Parsimonious
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Example—Visualizing Validation of Assumption
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Example—Visualizing Regression Estimation
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Example—Visualizing Prediction
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Example—Visualizing Trend
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Example—Visualizing Relationships
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Example—Visualizing Latent Traits (Today’s Focus)
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What is Scaling

(Mathematical) Definition of scaling:

Change the size (mainly) and the structure (slightly) to approximate an object,
e.g., image, data, etc.

It sounds like regression-type models:
In regression, what do we approximate about?
The regression line

What is the main difference between the two?
Regression: Estimating the relationships between X and Y (Supervised
Learning)
Scaling: Through X to define unknown Y (Unsupervised Learning)
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What is Scaling For

Purposes for scaling methods:

Data reduction: parsimony and the curse of dimensionality
Testing dimensionality: what are the sources of variability between objects?
Measuring objects: need measures of concepts of interest
Graphical display: numbers vs. graphics
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Scaling and Spatial Theory

Spatial Voting:

Everyone’s political preference can be represented by their positions on an
ideological scale, and citizens’ prefer candidates’ whose positions are closer to
their own

Scaling methods:
Produce a geometric representation of latent trait within the data
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Example of Scaling Results
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Common Scaling Methods

There are several popular methods in general and in political science:

Nonparametric or semi-parametric:
Principal Component Analysis (PCA) and Multiple Correspondence Analysis (MCA)
Optimal Classification (OC) and Ordered Optimal Classification (OOC)

Parametric:
Factor Analysis
Aldrich-McKelvey Scaling
Black-box scaling
Item Response Theory (IRT)
NOMINATE Scores
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Principal Component Analysis

Main ideas behind PCA:

Transferring a multi-dimensional data into lower dimensional representation
(usually two dimensions, why?)
The dimensions/directions are those on which data points distribute/vary
maximally
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PCA Demonstration I (Andrew Ng, 2015)
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PCA Demonstration II (Andrew Ng, 2015)
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PCA Demonstration III (Andrew Ng, 2015)
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Principal Component Analysis

Main ideas behind PCA:

Transferring a multi-dimensional data into lower dimensional representation
(usually two dimensions, why?)
The dimensions/directions are those on which data points distribute/vary
maximally

PCA can be used for:
Dimension reduction: reducing the amount of variables (multi-collinearity)
Measurement: Measuring concepts which are combined by variables, e.g.,
ideology, ability, etc.
Visualization: Intuitive interpretation
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Application of PCA—Loading Plot
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Application of PCA—Individual Plot
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Principal Component Analysis

Main ideas behind PCA:

Transferring a multi-dimensional data into lower dimensional representation
(usually two dimensions, why?)
The dimensions/directions are those on which data points distribute/vary
maximally

PCA can be used for:
Dimension reduction: reducing the amount of variables (multi-collinearity)
Measurement: Measuring concepts which are combined by variables, e.g.,
ideology, ability, etc.
Visualization: Intuitive interpretation

Issues:
Continuous and ordinal data only (is ordinal data truly ordinal?)
Missing data unavailable

How to derive principal components:
Decompose the variance-covariance matrix of data to find eigenvectors
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How Many PCs?

The elbow method
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Multiple Correspondence Analysis

MCA is invented to deal with PCA’s issues

Binary, ordinal, and nominal data types are all available
Continuous data may not be excluded from the analysis necessarily
No missing data issue

Ideas behind MCA:
Treating each value as a dummy
Transferring this binary data into probability data (as if continuous data)
Apply PCA process to the transferred data

Issue:
The result may be too complicated to be formative
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What is Contrastive Learning

Analyzing high-dimensional data to capture “patterns that are specific to, or
enriched in, one dataset relative to another”

Idea behind contrastive learning:
Exploring unique components or directions that contain more salient latent
patterns in one dataset (the target group) than the other (background group)

Difference between ordinary approach and contrastive learning:
Ordinary scaling: Identifying principal components/directions on which the data
as a whole varies maximally or distributes based on respondents’ (dis)similar
responses to questions/stimuli
Contrastive scaling: Splitting data into different groups first, usually by
predefined classes (e.g., party ID), and then compares the data structure of the
target group against the background group to find PC(s) on which the target
group varies maximally and the background group varies minimally
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Ordinary PCA Work Flow
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Contrastive PCA Work Flow
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Contrast Parameter—α

While conducting contrastive learning, there is a contrast parameter—α:

α is a hyper parameter, i.e., researchers can tune α based on subjective or
objective criteria
One way to intuitively think about α is to treat it as the weight we want to put on
the background group—while α is equal to 0, the procedure becomes to apply
ordinary scaling on the target group
The other way to intuitive think about α is to treat α as a value set—different α

means we would like to compare two groups through a different perspective
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cPCA Loadings of Californian Voters (TG: Democrats)
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cPCA Individuals of Californian Voters (TG: Democrats)
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cPCA Loadings of Californian Voters (TG: Republicans)
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cPCA Individuals of Californian Voters—Wall (TG: Republicans)
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cPCA Individuals of Californian Voters—Trump (TG: Republicans)
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Ordinary Scaling (Black-Box Scaling) Results of ESS 2018 (UK
Module)
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Contrastive MCA Results of ESS 2018 I (UK Module)
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Contrastive MCA Results of ESS 2018 II (UK Module)

TG: Conservatives, BG: UKIP (Left Panel)
TG: Labours, BG: UKIP (Right Panel)
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Ordinary Scaling (Black-Box Scaling) Results of UTAS 2012
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Contrastive MCA Results of UTAS 2012
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Scaling in General

Scaling method can be utilized for:

Preliminarily investigating latent traits buried in the data
Reducing dimensionality of data to prevent multicollinearity and inefficiency
Creating measurement for complex concepts

There is one issue existing in almost all current scaling methods:
Almost all scaling methods only model the level of “likeness”
In practice, these methods will consider “the Squad” to be closer to moderate
Republicans
Duck-Mayr and Montegomery (2021) include the level of “dislikeness” in their
scaling model which solves the aforementioned issue
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Contrastive Scaling in General

Utility of contrastive learning:

Mining data from different perspectives which are overlooked by ordinary
approaches
Checking similarity between datasets, e.g., balance-checking between the
treatment and control groups
Providing objective insights for subgroup analysis
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Causality

Note that estimating or deriving causality is different:

The latent traits within data only demonstrate correlation/association
Causal inference is mainly a design issue but not a data or modeling issue
Big data does not help much with causal inference
Statistical model or machine learning may help only when the design is correct
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The End

Thank You!
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Loadings and Variable Coordinates I
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Loadings and Variable Coordinates II
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Loadings and Variable Coordinates III
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