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Data Visualization in General

Example—Visualizing Validation of Assumption
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Data Visualization in General

Example—Visualizing Regression Estimation
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Data Visualization in General

Example—Visualizing Prediction
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Data Visualization in General

Example—Visualizing Trend
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Data Visualization in General

Example—Visualizing Latent Traits (Today’s Focus)

BlackBox Result of CCES 2015
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m (Mathematical) Definition of scaling:
m Change the size (mainly) and the structure (slightly) to approximate an object,
e.g., image, data, etc.
m |t sounds like regression-type models:
m In regression, what do we approximate about?
m The regression line
m What is the main difference between the two?

m Regression: Estimating the relationships between X and Y (Supervised
Learning)
m Scaling: Through X to define unknown Y (Unsupervised Learning)

10/45



What is Scaling For

m Purposes for scaling methods:

11/45



What is Scaling For

m Purposes for scaling methods:
m Data reduction: parsimony and the curse of dimensionality

11/45



What is Scaling For

m Purposes for scaling methods:

m Data reduction: parsimony and the curse of dimensionality
m Testing dimensionality: what are the sources of variability between objects?

11/45



What is Scaling For

m Purposes for scaling methods:

m Data reduction: parsimony and the curse of dimensionality
m Testing dimensionality: what are the sources of variability between objects?
m Measuring objects: need measures of concepts of interest

11/45



What is Scaling For

m Purposes for scaling methods:
m Data reduction: parsimony and the curse of dimensionality
m Testing dimensionality: what are the sources of variability between objects?
m Measuring objects: need measures of concepts of interest
m Graphical display: numbers vs. graphics
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Scalin

Scaling and Spatial Theory

m Spatial Voting:
m Everyone’s political preference can be represented by their positions on an
ideological scale, and citizens’ prefer candidates’ whose positions are closer to
their own

m Scaling methods:
m Produce a geometric representation of latent trait within the data
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Example of Scaling Results
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m Main ideas behind PCA:

m Transferring a multi-dimensional data into lower dimensional representation
(usually two dimensions, why?)

m The dimensions/directions are those on which data points distribute/vary
maximally

m PCA can be used for:

m Dimension reduction: reducing the amount of variables (multi-collinearity)

m Measurement: Measuring concepts which are combined by variables, e.g.,
ideology, ability, etc.

m Visualization: Intuitive interpretation
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Scaling

Application of PCA—Loading Plot
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Application of PCA—Individual Plot
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Scaling

Principal Component Analysis

m Main ideas behind PCA:
m Transferring a multi-dimensional data into lower dimensional representation
(usually two dimensions, why?)
m The dimensions/directions are those on which data points distribute/vary
maximally
m PCA can be used for:
m Dimension reduction: reducing the amount of variables (multi-collinearity)
m Measurement: Measuring concepts which are combined by variables, e.g.,
ideology, ability, etc.
m Visualization: Intuitive interpretation
m [ssues:
m Continuous and ordinal data only (is ordinal data truly ordinal?)
m Missing data unavailable
m How to derive principal components:
m Decompose the variance-covariance matrix of data to find eigenvectors
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Multiple Correspondence Analysis

m MCA is invented to deal with PCA’s issues

m Binary, ordinal, and nominal data types are all available
m Continuous data may not be excluded from the analysis necessarily
m No missing data issue

m Ideas behind MCA:

m Treating each value as a dummy
m Transferring this binary data into probability data (as if continuous data)
m Apply PCA process to the transferred data

m Issue:
m The result may be too complicated to be formative
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Contrastive Learning

What is Contrastive Learning

m Analyzing high-dimensional data to capture “patterns that are specific to, or
enriched in, one dataset relative to another”

m |dea behind contrastive learning:

m Exploring uniqgue components or directions that contain more salient latent

patterns in one dataset (the target group) than the other (background group)
m Difference between ordinary approach and contrastive learning:

m Ordinary scaling: Identifying principal components/directions on which the data
as a whole varies maximally or distributes based on respondents’ (dis)similar
responses to questions/stimuli

m Contrastive scaling: Splitting data into different groups first, usually by
predefined classes (e.g., party ID), and then compares the data structure of the
target group against the background group to find PC(s) on which the target
group varies maximally and the background group varies minimally
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Contrastive Learning

Ordinary PCA Work Flow
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tive Learning

Contrastive PCA Work Flow

Target

Back-
ground

d variables

&

n voters XT

d variables

m voters X B

Contrastive k' components
learning with

cPCA | P Projection |
Xy — aXp)

Projection matrix

Y

Yr

k'

Input data

Y

Yp

Contrastive
representation

27/45



Contrastive Learning

Contrast Parameter—a
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Contrast Parameter—a

m While conducting contrastive learning, there is a contrast parameter—a:

B o is a hyper parameter, i.e., researchers can tune o based on subjective or
objective criteria

m One way to intuitively think about « is to treat it as the weight we want to put on
the background group—while « is equal to 0, the procedure becomes to apply
ordinary scaling on the target group

m The other way to intuitive think about « is to treat o as a value set—different o
means we would like to compare two groups through a different perspective
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Contrastive Learning

cPCA Loadings of Californian Voters (TG: Democrats)
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Conuastlve Leammg

cPCA Individuals of Californian Voters (TG: Democrats)
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Contrastive Learning

cPCA Loadings of Californian Voters (TG: Republicans)
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Contrastive Learning

cPCA Individuals of Californian Voters—Wall (TG: Republicans)

Target: Republican, Background: Democrat
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Contrastive Learning

cPCA Individuals of Californian Voters—Trump (TG: Republicans)

Target: Republican, Background: Democrat
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Comparison

Ordinary Scaling (Black-Box Scaling) Results of ESS 2018 (UK
Module)
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Contrastive MCA Results of ESS 2018 | (UK Module)
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Contrastive MCA Results of ESS 2018 Il (UK Module)
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Comparison

Ordinary Scaling (Black-Box Scaling) Results of UTAS 2012
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Contrastive MCA Results of UTAS 2012
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Discussion
0000

Scaling in General

m Scaling method can be utilized for:

m Preliminarily investigating latent traits buried in the data
m Reducing dimensionality of data to prevent multicollinearity and inefficiency
m Creating measurement for complex concepts
m There is one issue existing in almost all current scaling methods:
m Almost all scaling methods only model the level of “likeness”

m In practice, these methods will consider “the Squad” to be closer to moderate
Republicans

m Duck-Mayr and Montegomery (2021) include the level of “dislikeness” in their
scaling model which solves the aforementioned issue
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Discussion

Contrastive Scaling in General

m Ultility of contrastive learning:
m Mining data from different perspectives which are overlooked by ordinary

approaches
m Checking similarity between datasets, e.g., balance-checking between the

treatment and control groups
m Providing objective insights for subgroup analysis
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Discussion

Causality

m Note that estimating or deriving causality is different:
m The latent traits within data only demonstrate correlation/association
m Causal inference is mainly a design issue but not a data or modeling issue
m Big data does not help much with causal inference
m Statistical model or machine learning may help only when the design is correct
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The End

Thank You!
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m Loadings for ESS 2018—TG: Labours, BG: UKIP (Left Panel)
m Variable Coordinates for ESS 2018—TG: Labours, BG: UKIP (Right Panel)
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m Loadings for ESS 2018—TG: Conservatives, BG: UKIP (Left Panel)

m Variable Coordinates for ESS 2018—TG: Conservatives, BG: UKIP (Right
Panel)
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m Loadings for UTAS 2012—TG: LDP, BG: DPJ (Left Panel)
m Variable Coordinates for UTAS 2012—TG: LDP, BG: DPJ (Right Panel)
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